CHAPTER II.

PHYSIOGRAPHY.

§ 1. General Description of Australia.

I. Geographical Position.-(i) General. The Australian Commonwealth, which includes the island continent of Australia proper and the island of Tasmania, is situated in the Southern Hemisphere, and comprises in all an area of about 2,974 ,581 square miles, the mainland alone containing about $2,94^{3,3}, 36$ square miles. Bounded on the west and.east by the Indian and Pacific Oceans respectively, it lies between longitudes $113^{\circ} 9^{\prime}$ E. and $153^{\circ} 39^{\prime}$ E., while its northern and southern limits are the parallels of latitude $10^{\circ} 4 \mathrm{r}^{\prime}$ S. and $39^{\circ} 8^{\prime} \mathrm{S}$., or, including Tásmania, $43^{\circ} 39^{\prime} \mathrm{S}$. On its north are the Timor and Arafura Seas and Torres Strait-on its south the Southern Ocean and Bass Strait. The extreme points are "Steep Point" on the west, ". Cape Byron" on the east. "Cape York" on the north, "Wilson's Promontory" on the south, or, if Tasmania be included, "South-East Cape."
(ii) Tropical and I'emperate Regions. Of the total area of Australia nearly 40 per cent. lies within the tropics. Assuming, as is usual, that the latitude of the Tropic of Capricorn is $23^{\circ} 30^{\prime} \mathrm{S}$. (its mean value for 1936 was $23^{\circ} 26^{\prime} 51.17^{\prime \prime}$), the areas within the tropical and temperate zones are approximately as follows :-

AUSTRALIA-AREAS OF TROPICAL AND TEMPERATE REGIONS.

(States and Terbitory Partially within Tropics.)

Thus the tropical part is roughly about one-half (0.530) of the three territories mentioned above, or about five-thirteenths of the whole of Australia (0.386).
2. Area of Australia compared with Areas of other Countries.-It is not elways realized that the area of Australia is almost as great as that of the United States of America, four-fifths of that of Canada, more than one-fifth of the area of the British Empire, nearly three-fourths of the whole area of Europe, and about 25 times as large
as Great Britain and Ireland. This great area, coupled with a limited population, renders the solution of the problem of Australian development a particularly difficult one. The areas of Australia and of certain other countries are given in the following table :-

AREA OF AUSTRALIA AND OF OTHER COUNTRIES.

Country		Country.	rea.
Continental Divisions-	Sq. miles.	Africa-continued.	Sq. miles:
Europe		Union of South Africa	72,000
Asia	16,020,000	Egypt	386,000
Africa	11,562,000	Tanganyika Territory	374,000
North and Central America	1,5	Nigeria and Protectorate..	373,000
and West Indies ..	8,649,000	Abyssinia	347,000
South America	7,010,000	Tripolitania	-000
Australasia and Polynesia	3,462,000	Africa	$322,000$ $298,000$
Total, exclusive of Arctic and Antarctic Conts...	51,115,000	Northern Rhodesia Cyrenaica	298,000 288,000 285,00
Europe-		Bechuanaland Protectorate	275,000
Soviet Union (Russia)	2,316,000	Madagascar	238,0no
France	213,000	Kenya Colony and Protec-	
Spain (inc. possessions)	194,000	torate ..	225,000
Germany	181,000	Other	1,444,000
Sweden	173,000	Total	,562,000
Poland	150,000		
Finland	150,000	North and Central America-	
Norway	125,000	Canada	3,684,000
Italy	120,000	United States of America	3,027,000
Rumania	114,000	Mexico	760,000
Yugoslavia	96,000	Alaska	587,000
Great Britain and Northern		Newfoundlaud and Labrà-	
Other ..	95,000 85,000	dor ..	63,000
Total	4,412,000	Other	379,000
Asia-		Total	8,649,000
Soviet Union (Russia)	5,860,000	South America-	
China and Dependencies	4,287,000	Brazil	3,292,000
British India and Administered Territories		Argentine Republic	1,078,000
Arabia and Auto	1,096,000	Bolivia	515,000
States		Peru $\because \underset{\text { Coxa }}{ }$ (exc of Panama)	482,000
Feudatory Indian States	$1,004,000$ 712,000	Venezuela (exc. of Panama)	449,000
Iran	628,000	Chile	352,000
Dutch East Indies	574,000	Ecuador	-oo
Turkey $\quad . . \quad . \cdot$	285,000	Other	437,000
Japan and Dependencies..	262,000	Total	
Afghanistan ..	251,000		
Siam	200,000	Australasia and Polynesia-	
Other	861,000	Commonwealth of Australia	2,974,581
Total	16,020,000	Dutch New Guinea	161,000
Africa--		New Zealand and Dependencies	
French West Africa	1,790,000	Territory of New Guinea	$\begin{array}{r} 104,015 \\ 93,000 \end{array}$
Anglo-Egyptian Sudan Frenoh Equatorial Africa	973,000 871,000	Papua.	$\begin{aligned} & 93,000 \\ & 90,540 \end{aligned}$
French Equatorial Africa Belgian Congo ..	$\begin{aligned} & 871,000 \\ & 921,000 \end{aligned}$	Other ..	
Algeria	848,000	Total	3,461,610
Angola	485,000	British Empire	3,355,426

The figures quoted in the table have been extracted from the Statistical Year Book of the League of Nations or the Statesman's Year Book.
3. Areas of Political Subdivisions.-As already stated, Australia consists of sis States and the Northern and Federal Capital Territories. The areas of these, and their proportions of the total of Australia, are shown in the following table :-

AUSTRALIA-AREA OF STATES AND TERRITORIES.

4. Coastal Configuration.-(i) General. There are no striking features in the configuration of the coast ; the most remarkable indentations are the Gulf of Carpentaria on the north, and the Great Australian Bight on the south. The Cape York Peninsula on the extreme north is the only other remarkable feature in the outline. In Year Book No. I, an enumeration of the features of the coast-line of Australia was given (see pp. 60 to 68).
(ii) Coast-line. The lengths of coast-line, exclusive of minor indentations, of each State and of the whole continent, and the area per mile of coast-line, are shown in the following table:-

AUSTRALIA-COAST=LINE AND AREA PER MILE THEREOF.

(a) Including Federal Capital Territory. (b) Area 2,948.366 square miles.

For the entire Commonwealth of Australia this gives a coast-line of $\mathbf{1 2 , 2 1 0}$ miles and an average of 244 square miles for one mile of coast-line. According to Strelbitski, Europe has only 75 square miles of area to each mile of coast-line, and, according to recent figures, England and Wales have only one third of this, viz., 25 square miles.
(iii) Historical Significance of Coastal Names. It is interesting to trace the voyages of some of the early navigators by the names bestowed by them on various coastal features-thus Dutch names are found on various points of the Western Australian coast, in Nuyts' Archipelago, in the Northem Territory, and in the Gulf of Carpentaria; Captain Cook can be followed along the coasts of New South Wales and Queensland; Flinders' track is easily recognized from Sydney southwards, as far as Cape Catastrophe,
by the numerous Lincolnshire names bestowed by him; and the French navigators of the end of the eighteenth and the beginning of the nineteenth century have left their names all along the Western Australian, South Australian and Tasmanian coasts.
5. Geographical Features of Australia.-In each of the earlier issues of this Year Book fairly complete information has been given concerning some special geographical element. The nature of this information and its position in the various Year Books can be readily ascertained on reference to the special index following the index to maps and graphs at the end of this work.
6. Fauna, Flora, Geology and Seismology of Australia.-Special articles dealing with these features have appeared in previous Year Books, but limits of space naturally preclude their repetition in each volume. As pointed out in 5 supra, however, the nature and position of these articles can be readily ascertained from the special index. A reference to Barisal Guns will be found in Vol. IX., p. 56.

§ 2. Climate and Meteorology of Australia.*

I. Introductory.-In Year Book No. 3, pp. 79, 80, some account was given of the history of Australian meteorology, including reference to the development of magnetic observations and the equipment for the determination of various climatological records. In Year Book No. 4, pp. 84 and 87, will be found a short sketch of the creation and organization of the Commonwealth Bureau of Meteorology, and a résumé of the subjects dealt with at the Meteorological Conference in 1907.
2. Meteorological Publications.-Reference to publications issued by the Central Meteorological Bureau will be found in Official Year Book No. 22, pp. 40, 41. The following publications have since been issued:-Volume of "Results of Rainfall Observations made in Western Australia," for all years of record to 1927: Map of Normal Meteorological Conditions in Australia affecting Aviation; a Paper "A Basis for Seasonal Forecasting ", by H. A. Hunt; Bulletin No. 18, "Foreshadowing Monsoonal Rains in Northern Australia": Bulletin No. 19, "Thunderstorms in Australia"; Bulletin No. 20, "Zones of Relative Physical Comfort in Australia"; a Paper on "Frost Risks and Frost-Forecasting"; Booklet containing Meteorological Data for certain Australian Localities ; and a volume of "Results of Rainfall Observations mado in Tasmania".
3. General Description of Australia.-A considerable portion (0.530) of three divisions of Australia is north of the tropic of Capricorn-that is to say, within the States of Queensland and Western Australia, and the Northern Territory ; no less than 1,149,320 square miles belong to the tropical zone, and $\mathrm{r}, \mathrm{ozo}, 720$ to the temperate zone. The whole area of Australia within the temperate zone, however, is $1,825,261$ square miles; thus the tropical part is about 0.386 , or about five-thirteenths of the whole, or the "temperate" region is half as large again as the "tropical" (more accurately 1.588). By reason of its insular geographical position, and the absence of striking physical features, Australia is, on the whole, less subject to extremes of weather than are regions of similar area in other parts of the globe, and latitude for latitude Australia is, on the whole, more temperate.

The altitudes of the surface of Australia range up to a little over 7,300 feet, hence its climate embraces a great many features, from the characteristically tropical to what is essentially alpine, a fact indicated in some measure by the name Australian Alps given to the southern portion of the great Dividing Range.

On the coast, the rainfall is often abundant and the atmosphere moist, but in some portions of the interior it is very limited, and the atmosphere dry. The distribution of forest, therefore, with its climatic influence, is very uneven. In the interior, in places, there are fine belts of trees, but there are large areas also which are treeless, and where the air is hot and parching in summer. Again, on the coast, even so far south as latitude 35°, the vegetation is tropical in its luxuriance, and to some extent also in character. Climatologically, therefore, Australia may be said to present a great variety of fratures.

[^0]4. Meteorological Divisions.-(i) General. Reference to the divisions adopted by the Commonwealth Meteorologist will be found in Official Year Book No. 22, p. 41.
(ii) Special Climatological Stations. The latitudes, longitudes and altitudes of special stations, the climatological features of which are graphically represented hereinafter, are as follows :-

SPECIAL Climatological STATIONS-AUSTRALIA.

Locallty.	Height above Sea Level.	Latitude. Longitude. S. , E.			Locallty.	Height above Sea Level.	Latitude. S.		Longitude E.	
	Feet.	deg. min. !	deg.			Feet.	deg.	aln.	deg.	
Perth	197	3157		50	Canberra	1,920	35	20		
Adelaide	140	$34 \quad 56$	I38	35	Darwin	97		28	130	
Brisbane	137	$27 \quad 28$	I 53	2	Alice Springs	1,926	23	38	133	37
Sydney	138	3352	151	12	Dubbo \quad -	870		18	148	35
Melbourne	115	3749	I 44		Laverton, W.A.	1,530	28	40	122	
Hobart	177	4253	147	20	Coolgardie ..	1,389		57	12 I	

5. Temperatures.-(i) Comparisons with other Countries. In respect of Australian -temperatures generally, it may be pointed out that the mean annual isotherm for 70° Fahrenheit extends in South America and South Africa as far south as latitude 33°, while in Australia it reaches only as far south as latitude 30°, thus showing that, on the whole, Australia has latitude for latitude a more temperate climate than other places in the Southern Hemisphere.

The comparison is even more favourable when the Northern Hemisphere is included, for in the United States the 70° isotherm extends in several of the western States as far north as latitude 41°. In Europe, the same isotherm reaches almost to the southern shores of Spain, passing, however, afterwards along the northern shores of Africa till it reaches the Red Sea, when it bends northward along the eastern shore of the Mediterranean till it reaches Syria. In Asia, nearly the whole of the land area south of latitude $40^{\circ} \mathrm{N}$. has a higher temperature than 70°.

The extreme range of temperature is less than 100° over practically the whole of Australia, that figure being only slightly exceeded at a very few places; it is mostly 70° to 90° over inland areas, and somewhat less on the coast. In parts of Asia and North America, the extreme range exceeds 130° and 150° in some localities.

Along the northern shores of Australia the temperatures are very equable. At Uarwin, for example, the difference in the means for the hottest and coldest months is only 8.5°, and the extreme readings for the year, or the highest maximum on record and the lowest minimum, show' a difference of under 50°.
(ii) Hottest and Coldest Parts. A comparison of the temperatures recorded at coast and inland stations shows that, in Australia, as in other continents, the range increases with increasing distance from the coast.

In the interior of Australia, and during exceptionally dry summers, the temperature occasionally reaches or exceeds 120° in the shade, and during the dry winters the major portion of the country to the south of the tropics is subject to ground frosts. The hottest area of the continent is situated in the northern part of Western Australia about the Marble Bar and Nullagine goldfields, where the maximum shade temperature during the summer sometimes exceeds 100° continuously for days and weeks. The coldest part of Australia is the extreme south-east of New South Wales and extreme east of Victoriathe region of the Australian Alps. Here the temperature seldom, if ever, reaches 100° even in the hottest of seasons, while in winter, readings slightly below zero are occasionally reoorded.

Tasmania as a whole enjoys a most moderate and equable range of temperature throughout the year, although occasionally hot winds may cross the Straits and cause the temperature to rise to 100° in the low-lying parts,
(iii) Monthly Maximum and Minimum Temperatures. The normal monthly maximum and minimum temperatures can bo best shown by means of graphs, which exhibit the nature of the fluctuation of each for all available years. In the diagram herein for nine representative places in Australia, the upper heavy curves show the mean maximum, and the lower heary curves the mean minimum temperatures based upon daily observations, while the other curves show the humidities.
6. Humidity.-After temperature, humidity is the most important element of climate, as regards its effect on human comfort, rainfall supply, and in connexion with engineering problems.

In this publication the absolute humidity has been graphically represented in inches of vapour pressure (i.e., that portion of the barometric pressure due to vapour). It is this total quantity of moisture in the air which affects personal comfort, plays an important part in varying the density of the atmosphere, and in heating and refrigerating processes. The more commonly quoted value, called the relative humidity, refers to the ratio which the actual moisture contents of the air bear to the total amount possible if saturation existed at the given temperature, and is usually quoted as a percentage. The relative humidity is an important factor in all drying operations, but is much less important than the absolute humidity as affecting animal life.

The mean monthly vapour pressure has also been added to the tables of climatological data for the capital cities included herein.

The normal monthly values of vapour pressure, it should be noted, combine to make tho annual curve for this element which is comparable with the maximum and minimum temperature curves, but the relative humidities consisting as they do of the extremes for each month, do not show the normal annual fluctuation which would be approximately midway between the extremes.

The order of stations in descending values of vapour pressure is Darwin, Brisbane, Sydney, Perth, Melbourne, Adelaide, Canberra, Hobart and Alice Springs, while the relative humidity diminishes in the order, Sydney, Canberra, Darwin, Melbourne, Brisbane. Hobart, Perth, Adelaide and Alice Springs.
7. Evaporation.-(i) General. The rate and quantity of evaporation in any territory is influenced by the prevailing temperature, and by atmospheric humidity, pressure and movement. In Australia, the question is of perhaps more than ordinary importance, since in its drier regions water has often to be conserved in "tanks"* and dams. The magnitude of the economic loss by evaporation will be appreciated from the tabular records herein. which show that the yearly amount varies from about 31 inches at Hokart to more than 100 inches in the Central parts of Australia. Over the inland districts of the continent it has been calculated that evaporation equals the rainfall where the annual totals are about 36 inches, the variations above and below this quantity being inverse.
(ii) Monthly Evaporation Curves. The diagrams herein showing the mean monthly evaporation in various parts of Australia disclose how characteristically different are the amounts for the several months in different localities.
(iii) Loss by Evaporation. In the interior of Australia the possible evaporation is greater than the actual rainfall. Since the loss by evaporation depends largely on the exposed area, tanks and dams so designed that the surface shall be a minimum are advantageous. Further, the more protected from the direct rays of the sun and from winds, by means of suitable tree planting, the less will be the loss by evaporation. These matters are naturally of more than ordinary concern in the drier districts of Australia.
8. Rainfall.-(i) General. The rainfall of any region is determined mainly by the direction and route of the prevailing winds, by the varying temperatures of the earth's surface over which they blow, and by its physiographical features.

Australia lies within the zones of the south-east trades and prevailing westerly winds. The southern limit of the south-east trade strikes the eastern shores at about 30° south latitude, and, with very few exceptions, the heaviest rains of the Australian

[^1]continent are precipitated along the Pacific slopes to the north of that latitude, the varying quantities being more or less regulated by the differences in elevation of the shores and of the chain of mountains upon which the rain-laden winds blow from the New South Wales northern border to Thursday Island. The converse effect is exemplified on the north-west coast of Western Australia, where the prevailing winds blowing from the interior of the continent instead of from the ocean, result in the lightest coastal rain in Australia.

The westerly winds, which skirt the southern shores, are responsible for the reliable, generally light to moderate rains enjoyed by the south-western portion of Western Australia, by the agricultural areas of South Anstralia, by a great part of Victoria, and ly the whole of Tasmania.
(ii) Distrithtion of Rainfall. The arerage annual rainfall map of Australia herein shows that the heaviest yearly falls-over 50 inches-occur orer the coastal region of the Northern Territory, over most of the Cape York Peninsular and coastal districts of Queensland, orer many of the coastal areas of New South Wales, and the western parts of Tasmania. A great part of the interior of the continent, stretching from the far west of New South Wales and the south-west of Qreensland to the vicinity of Sbark Bay in Western Australia, has a very low a verage rainfall of less than 10 inches a year. Between these two regions of heavy and rery low rainfall are the extensive areas which experience useful to good rains. and in the southern and eastern parts of which are found the best country and most of the population and primary production.
(iii) Factors Determining Occurrence, Intensity and Scasonal Distribution of Rainfall. Reference has already been made to the frequent rains occurring in the north-eastern coastal districts of Queensland with the prevailing south-east trade winds and to similar rains in the west of Tasmania with the prevailing westerly winds. Other rains in Australia are associated mainly with tropical and southern depressions.

The former chiefly affect the northern, eastern, and to some estent the central parts of the continent and operate in an irregular manner during the warmer half of the year, but principally from December to March. They vary considerably in activity and scope from year to year, occasionally developing into serere storms off the east and north-west coasts. Tropical rainstorms sometimes cover an enormous area, half of the continent on necasions recciving moderate to very heavy falls during a period of a few days. Rain is also experienced, with some regularity, with thunderstorms in tropical areas, specially near the coast. All these tropical rains, however, favour mostly the northern and eastern parts of the area referred to: the other parts further inland receive lighter, less frequent and less reliable rainfall. With the exception of districts near the east coast, where some rain falls in all seasons, the tropical parts of the continent receire useful rains only on rare cecasions from May to September.

The southern depressions are most active in the winter-June to August-and early spring months. The rains associated with them are fairly reliable and frequent over Southern Australia and Tasmania, and provide during that period the prinsipal factor in the successful growing of wheat. These depressions also operate with varying activity during the remainder of the year, but the accompanying rains are usually lighter. The southern rains favour chiefly the south-west of Western Australia, the agricultural districts of South Australia, Fictoria, Tasmania and the southern parts of New South Wales. They sometimes extend into the drier regions of the interior, but only infrequently and with irregular rains.

The map showing mean monthly distrikution of rainfall over Australia gives information on the amount and occurrence of rain in graphic form.
(iv) Wettest and Driest Regions. The wettest known part of Australia is on the north-east coast of Queensland, between Port Douglas and Cardwell, where three stations situated on, or adjacent to, the Johnstone and Russell Rivers have an average annual rainfall of between 142 and 165 inches. The maximum and minimum falls there are:Goondi, 241.53 in 1894 and 67.88 inches in 1915 , or a range of 173.65 inches; Innisfail, 211.24 in. 1894 and 69.87 inches in 1902, or a range of 141.37 inches; Harvey Creek, 254.77 in 1921 and 80.47 inches in 1902, or a range of 174.30 inches.

On four occasions more than 200 inches have been recorded at Goondi, the last of these being in 1910, when 204.82 inches were registered. The record at this station covers a period of 50 years.

Harvey Creek, in the shorter period of 29 years, has four times exceeded 200 inches, the total for 1921 being 254.77 inches, and at the South Johnstone Sugar Experiment Station, where a gauge was established seventeen years ago, 202.52 inches were recorded in 1921.

In Tasmania the wettest part is in the West Coast region, the mean annual rainfall at Lake Margaret being 145.25 inches, with a maximum of 175.12 inches in 1924.

The driest known part of the continent is in the Lake Eyre district in South Australia (the only part of the continent below sea level), where the annual average is only 5 inches, and where the fall rarely exceeds 10 inches for the twelve months.

The inland districts of Western Australia were at one time regarded as the driest part of Australia, but authentic observations in recent years over settled districts in the east of that State show that the annual average is from 10 to 12 inches.
(v) Quantities and Distribution of Rainfall. The general distribution is best seen from the rainfall map herein, which shows the areas subject to average annual rainfalls lying between certain limits. The areas enjoying varying quantities of rainfall determined from the latest available information are shown in the following table :-

NUA								
A verage Anuual Rainfall.	$\underset{(a)}{\text { N.S.W. }}$	Victoria.	Queens- land.	Australia	Northern Territory	Western Australia	$\underset{\substack{\text { Tans- } \\ \text { mania. }}}{\text { The }}$	$\underset{(t)}{\substack{\text { Total. }}}$
	1 sqr.mls.	sqr.mls.	sqr. mls.	sqr. mls.	sqr. mls.	8qr. mls.	ds.	sqr. mis.
Under 10 inches	48,749	nil	80,496	310,660	140,500	486,952	nil	1,067,357
10-15	78,454	19,270	81,549	36,460	${ }^{132,780}$	255,092	nil	603,605
15-20	55,762	13,492	111,833	19,940	63,026	94,101.	$3{ }^{3} 4$	358,458
20-25	45,140	14,170	I43,610	8,620	49,157	44,340	3,844	308,881
25-30	- 30,539	15,579	99,895	3,258	41,608	31,990	3,016	225,885
$30-40$	- 33,557	14,450	6r,963	1,036	37,642	59,520	5,027	213,195
Over 40	18,171	10,923	91,154	96	58,907	3,925	11,247	194,423
Total area	1310,372	87,884	500		23,620	975,920	23,438	97,80

(a) Including Federal Capital Territory. (b) Over an area of 2,777 square miles no records are available.

Referring first to the capital cities the records of which are given in the next table, it will be seen that Sydney, with a normal rainfall of 47.48 inches, occupies the chief place; Brisbane, Perth, Melbourne, Hobart, Canberra and Adelaide follow in that order, Adelaide with 21.15 inches being the driest. The extreme range from the wettest to the driest year is greatest at Brisbane (72.09 inches) and least at Adelaide (19.48 inches).

In order to show how the rainfall is distributed throughout the year in various parts of the continent, the figures for representative towns have been selected. (See map.) The figures for Darwin, typical of the Northern Territory, show that nearly the whole of the rainfall occurs there in the summer months, while little or none falls in the middle of the year. The figures for Perth, as representing the south-western part of the continent, are the reverse, for while the summer montbs are dry, the winter ones are very wet. In Melbourne and Hobart the rain is fairly well distributed throughout the twelve months, with a maximum in October for the former, and in November for the latter. The records at Alice Springs and Daly Waters indicate that in the central parts of Australia most of the rain occurs from November to March. In Queensland, the heaviest rains fall in the summer months, but good arerages are also maintained during the other seasons in eastern parts.

On the coast of New South Wales, the first six months of the yeàr are the wettest, with a maximum in the autumn; the averages during the last six months are fair, and moderately uniform. Generally it may be said that approximately one-third of the
area of the continent, principally in the eastern and northern parts, enjoya an annual average rainfall of from 20 to 50 or more inches, the remaining two-thirds averaging from 5 to 20 inches.
(vi) Curves of Rainfall and Evaporation. The relative amounts of rainfall and evaporation at different times through the year are clearly indicated in the graphs herein. Inspection thereof will show how large is the evaporation when water is fully exposed to the direct rays of the sun and to wind.
(vii) Tables of Rainfall. The table of rainfall for a long period of years for each of the varioas Australian capitals affords information as to the variability of the fall in successive years, and the list of the more remarkahle falls furniahes information as to what may be expected on particular occasions.

RAINFALL-AUSTRALIAN CAPITAL CITIES.

(a) Records commenced in J912; are not available for the years 1921 to 1923.

[^2]9. Remarkable Falls of Rain.-The following are the most remarkable falls of rain in the various States and in the Northern Territory which have occurred within a period of twenty-four hours. For cther very heavy falls at various localities reference may be made to Official Year Rook No. 14, pp. 60 to 64 and No. 22. pp. 46 to 48 :-
heavy rainfalls-NEW SOUTH Wales, UP T0 1936, inclusive.

HEAVY RAINFALLS-QUEENSLAND, UP T0 1936, INCLUSIVE.

Name of Town or Locality.	Date.	Amat.	Name of Town or Locality.	Date.	Amnt.
		ins.			Ins.
Babinda (Cairns)	2 Mar., 1935	24.14	Mackay	21 Jan., 1918a	24.70
Buderim Mountain	11 Jan., 1898	26.20	Macnade Mill	6 ,, 1901	23.33
Crohamhurst			Plane Creek	26 Feb., 19	
Deeral	2 Mar., I935	$27.60{ }^{\prime}$	Port Douglás.	1 Apr., i91ı	31.53
Goondi	30 Jan., ז913	24.10	Tully	12 Feb., 1927	23.86
Harvey Creek	3 " 191I	27.75	Woodlands (Yepp'n)	31 Jan., 1893	23.07
Kuranda (Cairns)	2 Apr., 1911	28.80	Yarrabah .	2 Apr., 1911	30.65

HEAVY RAINFALLS-WESTERN AUSTRALIA, UP TO 1936, INCLUSIVE.

Name of 'Cown or Locality.	Date.	Amnt.	Name of Town or Locality.	Date.	Amint.
		ins.			ins.
Balla Balla	21 Mar., 1899	14.40	Pilbara	2 Apr., 1898	14.04
Boodarie	21 Jan., 1896	14.53	Reebuck Plains	6 Jan., 1917	22.36
Broome	6 ", 1917	14.00	Thangoc	17-19 Feb.,'96	24.18
Derby .	7 Jan., 1917	16.47	Whim Creek	3 Apr., 1898	29.41
Fortescue	3 May, 1890	$23 \cdot 36$	Winderrie	17 Jan., 1923	14.23

HEAVY RAINFALLS-NORTHERN TERRITORY, UP TO 1936, INCLUSIVE.

Name of Town or Locality.		Date.	Amat. ${ }^{\text {a }}$	Name of Tow Locality.		Date.	Amnt.
Bathurst	Island		ins.				ins.
Mission	. .	7 Apr., 1925	11.85	Brock's Creek		24 Dec., 1915	14.33
Birrimbah		6 Mar., 1935	16.50	Cape Dou		13.Jan., 1934	13.58
Borrolonla		14 Mar., 1899	14.00	Darwin ..		7 Dec., 1915	II. 67

heavy rainfalls-south australia, le to 1936, inclusive.

HEAVY RAINFALLS-TASMANIA, UP TO 1936, INCLUSIVE.

Name of Town or Locality.	Date.	Amnt.	Name of Town or Locality.	Date.	Amnt.
-	-_-----				
Cullenswood	5 Apr., 1929	11.12	Riana	5 Apr., 1929	11.08
Gould's Country	8-10 Mer., 'II	15.33	The Springe	$30-31$ Jan.,'16	10.75
Lottah	8-10 Mar.,'i 1	18.10	Triabunna	5 June, 1923	10.20
Mathimma	5 Apr., 1929	13.25			

HEAVY RAINFALLS-FEDERAL CAPITAL TERRITORY, UP TO 1936, INCLUSIVE.

io. Snowfall.-Light snow has been known to fall occasionally as far north as latitude 31° S., and from the western to the eastern shores of the continent. During exceptional seasons. it has fallen simultaneously over two thirds of the State of New South Wales, and has extended at times along the whole of the Great Dividing Range, from its southern extremity in Victoria as far north as Tonwoomba in Queensland. During the winter, for several months, snow covers the ground to a great extent on the Australian Alps, where also the temperature falls below zero Fabrenheit during the night. In the ravines around Kosciusko and similar localities the snow never entirely disappears.

ANNCAI FLUCTUATIONS OF NORMAL MAXIMUM AND MINIMUM TEMPERATURE ANI. HUMIDITY.

Explanation.-The upper and lower heavy lines in each graph represent the mean maximum and mean minimum temperatures respectively. The Fahrenheit temperature scales are shown on the outer clde of the sheet under " F " and the centigrade scales in the two inner columns under " C ."

The broken line shows the normal absolute humidity in the form of 9 a.m. vapour pressures for which the figures in the outer " F " columms represent hundredths of an inch of barometric pressure.

The upper and lower fine lines join the greatest and the least monthly means of relative humidity resfectively, the figures under the outer columns " F " indicating percentage values.

The curves ior temperature and vapour pressure joining the mean monthly values serve to show the annial fluctuation of these elements, but the relative humidity graphs joining the extreme values for cach month do not indicate any normal annual variation.

Comparison of the maximum and minimum temperature curves affords a measure of the mean diurnal range of temperature. At Perth in the middle of January, for instance, there is normally a range of 21° from $63^{\circ} \mathrm{F}$. to $84^{\circ} \mathrm{F}$., but in July it is only 15° from $48^{\circ} \mathrm{F}$. to $63^{\circ} \mathrm{F}$.

The relative humidity curves illustrate the extreme range of the mean monthly bumidity over a number of years.

MEAN MONTHLY RAINFALL AND EVAPORATTON.

Explanation.-On the preceding graphs thick lines denote rainfall, and thin lines evaporation and show the fluctuation of the mean rate of fall or evaporation per month throughout the year. The results plotted from the Climatological Tables herein, are shown in inches (see the outer columns), and the corresfonding metric scale (centimetres) is shown in the two inner columns. The evaporation is not given for Darwin.

At Perth, Adelaide, Rrisbane, Melbourne, Hobart, Canberra, Alice Springs, and Coolgardie the results have been obtained from jacketed tanks sunk in the ground. At Sydney and Dubbo sunken tanks without water jackets are used, whist at Laverton (W.A.) the records are taken from a small portable jacket evaporation dish of 3 inches in diameter.

The distance for any date from the zero line to the curve represents the average number of inches, reckoned as per month, of rainfall at that date. Thus, taking the curve for Adelaide in the middle of January, the rain falls on the average at the rate of about three-fourths of an inch per month or, say, at the rate of about 9 incles per year. In the middle of June it falls at the rate of a lititle over 3 inches per month, or. say, at the rate of about 37 inches per year. At Dubbo, the evaporation is at the rate of nearly it inches per month about the middle of January, and only about it inches at the middu. of June.

The mean anmal rainfall and evaporation at the places indicated are given in the appended tate
MEAN ANNUAI, RAINEALL AND EVAPORATTON.

MEAY BAROMETRIC PRESSURE-CAPITAL CITIES.

Explanation.-The lines representing the yearly fuctuations of baronetric pressure at the State rapital cities are means for long periods, and are plotted from the Climatological Tables herein. The pressures are shown in inches on about $2 \frac{1}{k}$ times the natural scale, and the corresponding pressures in rentimetres are also shown in the two inncr columns, in which cach division represents one millimetre.

Taking the Brisbane graph for purposes of illustration, it will be seen that the mean pressure in the middle of January is about 29.87 inches, and there are maxima in the middle of May and August of alrott 30.09 inches.

Aren affected and period of duration of the Longest Heat Kiayes when the Maximum Temperature for conseculive 24 hours reafilied or excceded 100° Fah.

Greatest number of conseculive days on which the Shade Temperature was over 100° Fah: at the places indicated.

49

ir. Hail.-Hail falls most frequently along the southern shores of the continent in the winter, and over eastern Austraiia during the summer months. The size of tho hailstones generally increase with distance irom the coast. A summer rarely passes without some station experiencing a fall of stones ex"reding in size an ordinary hen-egg, and many ridded sheets of light-gange galvanized iron hear evidence of the weight and penetrating power of the stones.

The hailstones occur most frequently when the barometric readings indicate a flat and unstable condition of pressure. They are alnost invariably associated with tornadoes or tornadic tendencies, and on the east coast the clouds from which the stones fall are generally of a remarkable sepia-coloured tint.
12. Barometric Pressures.-The mean annual barometric pressure (corrected to sea-level and standard gravity) in Australia varies from 29.80 inches on the north coast to 29.92 inches over the central and 30.03 inches in the southern parts of the continent. In January, the mean pressure ranges from 29.70 inches in the northern and central areas to 29.95 inches in the southern. The July mean pressure ranges from 29.90 inches at Darwin to 30.11 inches at Alice Springs. Barometer readings corrected to mean sea-level and standard gravity have, under anticyclonic conditions in the interior of the continent, ranged as high as 30.78 inches (at Kalgoorlie on the 28th July, 19or) and have fallen as low as 27.55 inches. This lowest record was registered at Mackay during a tropical hurricane on the 21st January, 1918. An almost equally abnormal reading of 27.88 inches was recorded at Innisfail during a similar storm on the Ioth March, 1918 . The mean barometric pressure for the capitals of Australia is shown on the graphs herein.

Abstract

13. Wind.--(i) Trade Winds. The two distinctive wind currents in Australia are as previonsly stated, the south-east and westerly trade winds. As the bolt of the enrth's atmosphere in which they blow apparently follows the sun's ecliptic path north and south of the equator, so the area of the continent affected by these winds varies at different seasons of the year. During the summer months the anticyclonic belt travels in very high latitudes, thereby bringing the south-east trade winds as far south as 30° south latitude. The westerly trade winds retreat a consideralle distance to the south of Australia. and are rareis in evidence in the hot months. When the sun passes to the north of the equator. the south-east trade winds follow it. and only operate to the north of the tropics for the greater part of the winter. The westerly winds come into lower latitudes during the same period of the year. They swecp across the southern aress of the continent trom the Leeuwin to Cape Howe, and daring some seasons are remarkably persistent and strony, and occasionally penetrate to almost tropical latitudes.

(ii) Iand and Sea Breezes. The provailing winds second in order of importance are the land anti sea brezes. - On the east coast the sea breezes which come in from the northeast. when in full force. frequently reach the velocity of a gale during the afternoon in the summer months. the maximum hourly relocity, ordinarily attained alout a p.m., not infrequently attaining a rate of 35 to 40 miles per hour. This wind, although strong, is usually shatiow in depth, and docs not ordinarily renetrate more than 9 or 12 miles inland.

The land breczes on the cast coast llow out from a westeriy direction during the right.
On the western shores of the continent the directions are reversed. The sea lreezes come in from the sonth-west, and the land breezes bluw out from the north-cast.
(iii) Inlund Winds. Tnland, the direction of the prevailing winds is largely regulated by the seasonal changes of pressure, so disiosed as to cause the winds to radiate spirally outward from the centre of the continent during the winter monthe, and to circulate spirally from the seatoard to the rentre of Australia during the summer months.
2218.-4
(iv) Prevailing Direction at the Carital Cities. In Canberra, the winds are mainly - from easterly and north-westerly directions, the former predominating to a somewhat greater degree in the mornings, the latter in the afternoons and in the colder half of the year.

In l'erth, southerly (south-west to south-east) is the prevailing direction for August to April inclnsive and north-north-west to north-north-east for the midwinter months.

In' Adelaide the summer winds are from the south-west and south, and in the winter from north-east to north.

In Brisbane, south-east winds are in evidence all the year round, but more especially from January to April.

In Sydney from May to September the prevailing direction is westerly, and for the remaining seven months north-easterlv.

Melbourne winter winds are from north-west to north-east, and those of the summer from sonth-west to south-east.

At Hoburt the prevailing direction for the year is from north west.
Over the greater fart of Australia, Jannary is the most windy month, i.e., is the month when the winds are strongest on the average, thourh the most violent wind storms ocrur at other times during the year, the time varying with the iatitnde.
14. Cyclones and Storms.-The "elements" in Australia are ordinarily peaceful. and while destructive cyclones have visited various parts, more especially coastal areas, such visitations are rare, and may be properly described as erratic.

During the winter months, the southern shores of the continent are subject to cyclonic storms, evolved from the V-shaped depressions of the southern low-pressure belt. They are felt most severely over the south-western parts of Western Australia, to the south-east of South Australia, in Bass Strait, including the coast-line of Victoria, and on the west coast of Tasmania. Apparently the more violent wind pressures from these cyclones are experienced in their northern half, or in that part of them which has a north-westerly to a south-westerly circulation.

The north-east coast of Queensland is occasionally visited by hurricanes from the north-east tropics. During the first four months of the year, these hurricanes appear to have their origin in the neighbourhood of the South Pacific Islands, their path being a parabolic curve first to the S.W. and finally towards the S.E. Only a small percentage. however, reach Australia, the majority recurving in their path to the east of New Caledonia.

Very severe cyclones, locally known as "willy willies," are peculiar to the north. west coast of Western Australia from the months of November to April, inclusive. They apparently originate in the ocean in the vicinity of Cambridge Gulf, and travel in a south-westerly direction with continually increasing force, displaying their greatest onergy near Cossack and Onslow, between latitudes 20° and 22° South. The winds in these storms, like those from the north-east tropics, are very violent and destructive, and cause great havoc amongst the pearl-fishers. The greatest velocities are usually to be found in the south-eastern quadrant of the cyclones, with north-east to east winds. After leaving the north-west coast, these storms either travel southwards, following the coast-line. or cross the continent to the Great Australian Bight. When they take the latter course, their track is marked by torrential rains, as much as 29.41 inches, for example, being recorded in 24 hours at Whim Creek from one such occurrence. Falls of to inches and over have frequently been recorded in the northern interior of Western Australia from similar storms.

Some further notes on severe cyclones and on "southerly bursters," a characteristic feature of the eastern part of Australia. will be found in previous issues of the Official Year Book (see No. 6. pp. 84, 85. 86).

A special article dealing with "Australian Hurricanes and Related Storms" appeared in Official Year Book No. 16, pp. 80-84.
15. Influences affecting Australian Climate.-(i) General. Australian history does not cover a sufficient period, nor is the country sufficiently occupied, to ascertain whether or not the advance of settlement has materially affected the climate as a whole. Local changes have, however, taken place, a fact which suggests that settlement and the treatment of the land have a distinct effect on local conditions. For example, the mean temperature of Sydney shows a rise of two tenths of a degree during the last twenty years, a change probably brought about by the great increase of residential and manufacturing buildings within the city and in the surrounding suburbs. Again, low-lying lands on the north coast of New South Wales, which originally were seldom subject to frosts, have, with the denudation of the surrounding hills from forests, experienced annual visitations, the probable explanation being that through the absence of trees the cold air of the high lands now flows unchecked and untempered down the sides of the hills to the valleys and lower lands.
(ii) Influence of Forests on Climate. As already indicated, forests doubtless cxercise a great influence on local climate, and hence, to the extent that forestal undertakings will allow, the weather can be controlled by human agency. The direct action of forests is an equalizing one; thus, especially in equatorial regions, and during the warmest portion of the year, they considerably reduce the mean temperature of the air. They also reduce the diurnal extremes of shade temperatures by altering the extent of radiating surface by evaporation, and by checking the movement of air, and while decreasing evaporation from the ground, they increase the relative bumidity. Vegetation greatly diminishes the rate of flow-off of rain and the washing away of surface soil, and when a region is protected by trees, a steadier water supply is ensured, and the rainfall is better conserved. In regions of snowfall, the supply of water to rivers is similarly regulated, and without this and the sheltering influence of ravines and "gullies," watercourses supplied mainly by melting snow would be subject to alternative periods of flooding and dryness. This is borne out in the case of the inland rivers, the River Murray, for example, which has never been known to become dry, deriving its steadiness of flow mainly through the causes indicated.
(iii) Direct Influence of Forests on Rainfall. Whether forests have a direct influence on rainfall is a debatable question, some authorities alleging that precipitation is undoubtedly induced by forests, while others take the opposite view.

Sufficient evidence exists, however, to prove that, even if the rainfall has not increased, the beneficial climatic effect of forest lands more than warrants their protection and extension. Rapid rate of evaporation, induced by both hot and cold winds, injures crops and makes life uncomfortable on the plains, and, while it may be donbted that the forest aids in increasing precipitation, it must be admitted that it does check winds and the rapid evaporation due to them. Trees as wind-breaks have been successfully planted in central parts of the United States, and there is no reason why similar experiments should not be successful in many parts of the treeless interior of Australia. The belts should be planted at right angles to the direction of the prevailing parching winds, and if not more than half a mile apart will afford sheiter to the enclosed areas.

In previous issues some notes on observations made in other countries were added (see Official Year Book No. 6, pp. 86 and 95).
16. Rainfall and Temperatures, Various Cities.-The following table shows rainfall and tewperature for various important cities throughout the world, for the Federal Capital, and for the capitals of the Australian States.

RAINFALL AND TEMPERATURES－VARIOUS CITIES．

Place．－		Ann	Hal Rainf			Temperature．				
	Height M．S．L．					$\begin{aligned} & \text { 苞它 } \\ & \text { 呺 } \end{aligned}$	$\begin{aligned} & \text { 荡 } \\ & \text { 或 } \\ & \overrightarrow{E B E} \end{aligned}$			
Arosterdam（Gar－ deus）	Ft．		Ins． 38.39	Ilis．		Fahr 37.4	Fahr．	Fahr．		Fahr． 37.0
Auckland	100	44.85	74.15	26.32	65.8	52.	85.		60	51.6
Athens	351	15.48	33.33	4.56	79.2	49.1	109.4	19.6	8 t .0	47.4
Bergen	${ }_{116}$	73.43	107.32	54.33	56.1	34.7	86.0	7.3	57．4	34．2
Berlin（Central）	161	22.72	30.04	14.25	6.8	33.0	98.6	－13．4	66.0	31.8
	1，877	36.30	58.23	24.69	62.2	30.1	9 m .4	-3.6	64.4	8.0
Bombay	32	70.54	$\mathrm{H}_{4} .89$	33.42	82.7	74.7	100.2	53.2	84.3	3.9
Breslau	410	22.60	32.51	15.91	64.2	30.9	99.9	25．6	64.2	30.9
Brussels	328	28.35	45.18	17.73	62.6	36.0	95.4	－ 4.4	63.7	34.5
Budapest	425	24.76	37.05	16.81	69.3	32.2	101．7	－10．1	71.2	30.2
Auenos Ayres	82	38.78	70.72	20.04	72.7	50.9	104．0	22.3	73.8	50.0
Calcutta	21	61.82	$9^{8.48}$	38.43	85.6	68.0		44．2	86.0	66.4
Capetown	40	25.50	36.72	17.71	68.1	54.7	102.0	34.0	68.8	53.9
Caracas	3.420	30.03	47.36	23.70	68.3	65.3	87.8	48.2	69.2	63.7
Chicago	823	33.28	45.86	24.52	70.0	26.1	103.0	23.0	72.4	23.7
Chrlstriurch	22	25.21	35.30	13.54	60.8	43.5	95.7	21.3	61.6	42.7
Christiania（Osto）	82	25.39	36.18	16.24	61.0	25.5	95.0	－13．4	63.1	24.4
Colombo	24	88.53	123.96	53．56	81.6	78.7	97.2	61.6	82.0	78.6
Constantinople	245	28.75	42.74	14.78	74.0	43.5	103.6	13.0	75.7	42.0
Copershagen	43	22.80	32.52	14.02	60.9	32.7	9 x .4	－13．0	62.6	31.8
Dresden	115	24.22	34.42	11.73	64.6	33.2	93.4	－15．3	66.0	3 F .6
Imblin（City）	54	27.65	35.56	16.60	59.1	42.8	87.0	13.0	60.4	42.9
Dunedin	300	36.92	54.51	21.80	57.3	43.5	94.0	23.0	58.0	42.5
Durban	260	40.79	71.27	27.24	75.6	64.4	110.6	4 T .1	76.7	63．8
Edinburgh（Leith）	44 I	25．2x	32.05	16.44	55.9	39.0	90.0	6.0	57.3	38.7
Geneva	1，332	32．13	47.60	18.73	64.0	33.4	100.0	－13．5	65．8	31.8
Genoa	157	51.29	108.22	28.21	73.8	46.8	94.5	16.7	75.4	45.5
Clasgow	139	38.49	50.18	29.05	57.0	39.5	84.9	6.6	58.3	39.3
Greenwich	149	$z 3.50$	35.54	16.38	61.7	40.4	100.0	4.0	83.3	
Hong Kong	109	85.61	119.72	${ }_{4}{ }^{2} .88$	81.5	60.5	97.0	32.0	82.0	58.8
Johannesburg	5.750	31.63	50.00	21.66	65.4	54.4	93.6	20.8	68.2	48.0
Leipzig	394	24.69	31.37	17．10	63.9	$3 \pm .6$	96.4	－16．6	64.8	30.0
Leningrad	15	21.30	29.52 52	13.75	6 r .1	17.4	89.6	－30．3	63.7	15.2
Lisbon	313	26.97	52.82	16.34	70.0	52.9	102.9	29.3	71.1	51.8
London（Kew）	${ }_{18}$	23.80	38.18	12.16	60.8	39.9	94.0 198	9.0	62.3	39.1
Madras	22	49.85	78.92	21.74	89.0	76.8	113.0	57.5	89.9	76.
Madrid	2，149	16.23	27.48	9.13	73.0	48．2	107.1	10.5	75.7	39.7
Marseillea	${ }_{24}{ }^{2}$	22.10	43.04	Ir．ir	70.4	45.5	101.5	6.3	72.0	44.3
Moscow	526	18.94	29.07	12.07	63.4	14.7	95.0	－41．4	66.1	18.9
Naples	489	34.00	56.58	21.75	73.6	${ }_{48.0}$	99.5	23.9	75.4	46.3
New York	314	44.63	58.68	33.17	71.4	31.8	102.0	-13.0	73.5	30.2
Ottawa	236	33.51	51.25	25.63	66.6	14.0	98.0	－33．0	69.1	11.8
$\left.\begin{array}{c} \text { Paris } \\ \text { Maur } \end{array}\right) \text { (Parc-St. }$	164	22.68	29.80	10	63.5		ioi．r	－19．5	64.8	36.7
Pekin		22.66	36.00	18.00	77.9	26.8	100.2	2.7	79.3	23.7
Quebec	295	41.25	53.79	32.12	63.4	12.6	97.0	－34．0	65.6	9.8
Rome	165	32.57	57.89	12.72	74.3	46.0	103.0	21.4	76.1	44.6
San Francisco	155	22.27	38.82	9.00	58.8	50.5	101.0	29.0	59.3	49.5
Shanghai	21	45.00	62.52	27.92	78.0		102.9	10.2	80.4	37.8
Singapore	8	91．99	158.68	32.71	8 8 .2	78.6	94.2	63.4	81.5	78.3
Stockholm	146	21.60	28.47	11.77	62.2	26.4	91.8	－22．0	59.7	27.3
Tokio	65	6 x .45	86.37	45.72	74.8	39：2	9 r .0	29.7	77.7	37.5
Trieste．	85	42.94	63.14	26.57	73.9	41.3	99.5	14.0	76.3	39：9
Vienna	664	25.51	35.55	16.54	65.3	31.3	97.2	－14．4	66.7	29.5
Vladivoutock（Mt．）	420	29.23	38.48	21.17	65.5	9.7	92.3	－22．2	69.4	3.5
Washington	112	43.50	61.33	30.85	74.7		106.0		76.8	32.9
Wellington	10	39.86	67.68	27.83	61.9	48.7	88.0	28.6	62.6	48.0
Zuirich	1，542	45.15	78.27	29.02	63.3	． 31.3	94.1	－0．8	65.1	29.5

State Capitals．
（a）Mean of the three hottest months．（b）Mean of the three coldest months．
17．Climatological Tables．－The means，averages，extremes，totals，etc．，for a number of climatological elements have been determined from long series of observations at the Australian capitals up to and including the year 1935 ．These are given in the following tables：－

CLIMATOLOGICAL DATA-CANBERRA, FEDERAL CAPITAL TERRITORY.
Lat. $35^{\circ} 20^{\prime}$ S., Long. $149^{\circ} 15^{\prime}$ E. Height above M.S.L. t,920 Ft.
Barometer, Wind, Evaporation, Lightning, Clodds and Clear Days.

Temperature and Sunshine.

(a) Not available.
(e) 1 and 3/5923.
(f) $1 / 1923,3 / 1924$ and 15 nind $16 / 1931$.
(g) Total for year.

Humidity, Rainfall and Dew.

Climatological data-perth, western australia.

Lat. $31^{\circ} 57^{\prime}$ S., Long. $115^{\circ} 50^{\prime}$ E. Height above M.S.L. 197 Ft.
Barometer, Wind, Evaporation, Lightning, Clouds and Clear Days.

Temperature and Sunshine.

Month.	Mean Temperature (Fahr.).		Extreme Shade Temperature (Fals.).		ExtremeTemperature (Fahr.).		- ¢
	Mean	$\begin{aligned} & \text { Mean Mean. } \\ & \text { Min. } \end{aligned}$	Highest. Lowest.		Highest in Sun.	Lowest on Grass.	
No. of yrs. over which observation extends.	40	40	$40 \quad 10$	40	38	38	39
January	81.7	63.478	$\overline{110.2} \overline{12 / 34} \quad \overline{48.6} \overline{20 / 25}$	61.6	$177.322 / 14$	40.4 1/21	322.6
February	84.9	$63.4 \begin{array}{lll} & 71.2\end{array}$	$\begin{array}{llll}112.2 & 8,33 & 47.7 & 1 / 02\end{array}$	64.5	173.7 4/31	39.8 1/13	272.5
March	8 L .5	$61.5 \mid 71.5$	$106.414 / 22 \quad 45.8$ 8/03	60.6	$167.019 / 18$	36.7 8/03	268.6
April	76.2	57.366 .8	$\begin{array}{llll}99.7 & 9.10 & 39.3 & 20,1.1\end{array}$	60.4	157.0 8/16	31.0 20/14	218.7
May	68.0	52.7 60.S	90.4 2. $070734.3 \mathrm{II} / \mathrm{I} 4$	56.1	176.0 4 ' $=5$	25.3 11/14	175.1
June	64.1	$\begin{array}{lll}49.6 & 56.8\end{array}$	8 Sr .7 2/14 435.0	46.7	$135.5 \quad 9 / 14$	26.5 30/20	144.0
July	62.7	$47.8: 55.3$	\%6.4 21/2I	42.2	132.9 25/13	$25.130 / 20$	165.2
August	63.8	43.456 .1	$8 \mathrm{I} .012 / 14$, $35.43 \mathrm{r} / \mathrm{o8}$	45.6	145.1 29/21	$26.724 / 35$	186.1
September	66.4	$50.4 \quad 58.4$	90.9 30/18:38.8 88/00	52.1	153.6 29/16	$29.221 / 16$	208.0
October	69.1	52.5 '60.3		55.3	$157.531 / 36$	29.8 16/31	243.2
November	75.7	56.9 66.3	104.6 $24 / 13$ 1 42.0 1/04	62.6	$167.030 / 15$	35.4 6/10	289.0
December	85.2	60.9 : 71.0	$107.920 / 0.4 \mid 48.0 \quad 2 / 10$	59.9	158.8 11/27	39.0 (a)	324.7
$\text { Year }\left\{\begin{array}{l} \text { A verages } \\ \text { Extremes } \end{array}\right.$	73.3	$\begin{array}{c\|c} 55.4 & 64.3 \\ - & - \\ \hline \end{array}$	112.2 8/2/33 34.2 7/7/16	78.0	$77.3 \overline{22 / 1 / 14}$	$25.1 \overline{30} / 7 / 20$	$817.7(b$

(a) $2 / 1910$ and $\mathrm{I} 2 / 5920$. (b) Total for year.

Humldity, Rainfall and Dew.

(a) Various years.
(b) Jan., Feb., March, various years.

Climatological data-adelaide, south australia.

Lat. $34^{\circ} 5^{\prime}$ S., Lona. $138^{\circ} 35^{\prime}$ E. Height above M.S.L. 140 Ft. Barometer, Wind, Evaporation, Lightning, Clouds and Clear Days.

(a) 10/4/96 and 31/8/97.

Temperature and Sunshine.

Month.	Mean Temperature (Fahr.).			Extreme Shade Temperature (Tahr.).			$\begin{gathered} \text { Extreme } \\ \text { Temperature (Fahr.). } \end{gathered}$		
	$\begin{array}{\|l\|} \text { Mean } \\ \text { Max. } \end{array}$	Mean Min.	ean.	Highest.	Lowest.		Highest in Sun.	Lowest on Grass.	
No. of yrs. over which observation extends.	80	80	80	80	80	So	56	76	53
January	86.0		73.7	116.3 26/58	$45.121 / 8$	71.2	180.0 18/82	$36.514 / 79$	308.6
February	86.01	61.9	74.0	113.6 12/99	$45.5123 / 18$	68.1	$170.510 / 00$	$35.8123 / 26$	263.7
March	80.9	58.9	. 69.9	$110.5 \quad 9 / 34$	$43.921 / 33$	66.6	$174.017 / 83$	$32.121,33$	239.5
April	73.2	54.5	${ }_{53}^{63.9}$	$88.010 / 65$	39.6 15/59	58.4	$155.01 / 83$	$30.216 / 17$	${ }^{181.0}$
May	65.8	50.3	53.0	89.5 4/21	36.9 (a)	52.5	${ }_{5} 48.212 / 79$	25.6 19/28	150.2
June	60.4	46.7	53.6	$76.023 / 65$	32.5 27/76	43.5	133.8 $18 / 79$	$22.912 / 13$	123. ${ }^{1}$
July	59.0	44.7	51.9	\%4.0 11/06	32.0 24/08	43.0	134.5 26/00	22.1 $30 / 29$	${ }^{136.6}$
August	62.0	45.9	54.0	$85.031 / 11$	$32.317 / 59$	52.7	$140.031 / 92$	22.8 ri/29	163.8
September	66.4	48.0	57.2	90.7 23/82	$32.74 / 58$	58.0	$160.533 / 82$	25.0 $25 / 37$	185.5
October November.	77.4 78.6	51.4 55.1	61.9 67.0	$102.921 / 22$ $113.525 / 65$	$\begin{array}{lll}36.0 & -1 / 57 \\ 40.8 & 2 / 09\end{array}$	66.9 72.7	$162.030 / 21$ $166.920 / 78$	$\begin{array}{ll}27.8 & (c) \\ 31.5 & \text { 2/09 }\end{array}$	225.9 263.2
December	83.2	58.9	71.1	114.6 29/31	43.0 (b)	71.6	175.7 \%/99	32.5 32.5	300.2
Year $\left\{\begin{array}{l}\text { A verages } \\ \text { Extremes }\end{array}\right.$	72.8		63.0	${ }_{116.3}^{26 / 1 / 58}$	32.0 $24 / 7 / 08$	84.3	${ }_{180.0}^{18 / 1 / 82}$	22.1 $30 / 7 / 29$	${ }_{\text {(d) }}{ }^{54 \mathrm{I} \cdot 3}$

(a) 26/1895 and 24/1904.
(b) $16 / 1861$ and $4 / 1906$.
(c) $2 / 1918$ and $4 / 193 \mathrm{r}$.
(d) Total for year.

Humidity, Rainfall and Dew.

(a) Varibus years.

[^3]
CLIMATOLOGICAL DATA-BRISBANE, QUEENSLAND.

Lat. $27^{\circ} 28^{\prime}$ S., Long. $153^{\circ} 2^{\prime}$ E. Height above M.S.L. 137 Ft.
Barometer, Wind, Evaporation, Lightning, Clouds and Clear Dayb.

Temperature and Sunshine.

(a) 9/96 and 5/03.
(b) 12/94 and 2/96.
(c) $12 / 7 / 94$ and $2 / 7 / 96$.
(d) Total for year.

Humidity, Rainfale and Dew.

(a) $1362,1869,1880$
and $16 / 89$.
(b) March, May, June, July, August and November, various years. (c) $15 / 7$ h

Climatological data--SYDNEY, NEW SOUTH WALES.

Lat. $33^{\circ} 52^{\prime}$ S., Long. $151^{\circ} 12^{\prime}$ E. Height above M.S.L. i38 Ft.
Barometer. Wind, Evaporation, Lightning, Clouds and Clear Days.

Month.		Wind.*								
		Greatest Number of Miles in One Day.	$\begin{gathered} \text { Mean } \\ \text { Hourly } \\ \text { Pres- } \\ \text { sure. } \\ \text { (lb.) } \end{gathered}$	Total Miles.	Prevailing Direction.					
					9 a.m.	$3 \mathrm{p} . \mathrm{m}$.				
No. of yrs, over which observation extends.	78	70	70	70	70	70	57	77	75	26
January	29.89 .4	$\begin{array}{ll}627 & 3 / 93\end{array}$	0.27	6,982	N 1	ENE	$5 \cdot 3^{83}$	5.0	5.8	4.8
February	29.942	$69712 / 69$	0.24	6.010	NE	ENE	4.243	$4 \cdot 4$	6.0	$5 \cdot 3$
March	30.013	754 20/70	0.18	5,919	W	ENE	3.657	4.2	5.5	5.8
April	30.063	$6426 / 82$	0.16	5,330	W	NE	2.637	3.7	5.0	7.5
May	30.085	6826198	0.17	5,443	W	NE	1.837	3.0	4.9	7.7
June	30.064	6.42 13. 68	0.21	5.861	W	W	1.449	2.1	4.8	8.3
July	30.069	744 17!79	0.20	6.038	W	W	1.535	2.3	4.4	10.2
August .	30.068	649 22/72	0.19	3,889	W	NF	1.966	3.2	4.0	II. 1
September	30.010	771 $6 / 74$	0.22	6,128	W	NE	2.728	4.0	4.3	9.8
October	29.967	741 4/72	0.25	6,654	W	ENE	3.919	5.0	4.9	7.6
November.	20.940	$\begin{array}{lll}583 & 12 / 87\end{array}$	0.25	6,574	F ${ }_{\text {N }}^{\text {N }}$	B NE	4.650	5.4	5.6	5.7
December	29.882	$750 \quad 3{ }^{184}$	0.26	6,9.47	ENE	E SE	$5 \cdot 387$	5.9	5.7	4.8
Year $\left\{\begin{array}{l}\text { Totals } \\ \text { A verages } \\ \text { Extremes }\end{array}\right.$	30.000	771- $\overline{6 / 9 / 74}$	0.22	6,140	W	$\mathrm{F} \overline{\mathrm{N}} \mathrm{E}$	39.391	$\left\lvert\, \begin{gathered}48.2 \\ - \\ -\end{gathered}\right.$	5.0	89.6

Temperatore and Sunshine.

Month.	Mean Temperature (Falir.).			Extreme Shade Temperature (Fahr.).			Extreme Temperature (Fahr.).		
	Mean Max.	Mean Min.	an.	Highest.	Lowest.		Highest in Sun.	Lowest on Grass.	
No. of yrs. over which observation extends.	78	78	78	78	78	78	74	78	$16+$
January	78.4	64.9	71.6	$108.513 / 96$	$51.214 / 65$	57.3	164-3 26.15	43.76125	226
February	77.7	65.0	71.3	107.8 8/36	$49.327 / 63$	58.5	$161.28 /=5$	$\underline{+2.8} 22 / 33$	202
March	75.7	62.9	69.3	102.6 3.60	$48.814 / 86$	53.8	$158.310 / 26$	$39.917 / 13$	201.8
April	71.4	58.0	61.7	91.4 1/36	44.627 .64	46.8	144.1 10/ 7	33.3 24/09	187.0
May	65.6	52.1	58.8	86.0 1/19	$40.2 \quad 22 / 59$	45.8	$129.71 / 96$	29.3 25/17	176.0
June	61.2	48.2	54.7	80.4 $417 / 31$	35.7 22/32	41.7	$\begin{array}{lll}125.5 & 2 / 23\end{array}$	28.0 22/32	150.9
July	50.7	46.0	53.0	78.3 22/26	$35.012 / 00$	42.4	$124.7 \mathrm{I} 9 / 77$	$24.04 / 93$	186.6
August	62.9	47.5	55.\%	$82.031 / 84$	36.8 3/72	45.2	$149.030 / 78$	26.1 4/09	221.2
September	67.0	51.3	59.2	92.3 27/19	$40.818 / 64$	5 I. 5	$112.212,78$	30.1 17/05	222.1
October	71.3	55.8 .	63.6	$98.919 / 98$	$42.26 / 27$	56.7	152.2 20/33	32.7 0/05	241.2
November	71.3	$59.6{ }^{-1}$	67.0	$102.721 / 78$	45.8 1/05	56.9	$158.528 / 99$	$36.06 / 06$	232.9
December	77.0	62.9	70.n	$107.531 / 04$	$48.4 \quad 3 / 24$	59.1	$164.527 / 89$	$41.43 / 24$	223.3
$\text { Year }\left\{\begin{array}{l} \text { Averages } \\ \text { Extremes } \end{array}\right.$	$\stackrel{70.2}{-}$	56.2	63.2	${ }_{\text {108.5 }} \times$	${ }^{35.7}{ }_{22 / 6 / 32}$	72.8	${ }^{164.5} \begin{gathered}\text { 27/12/80 }\end{gathered}$	24.0 ${ }_{\text {4/7/03 }}$	$2,48 \mathrm{I} . \mathrm{S}$ (ct)

(a) Total for year.

Humidity, Rainfall and Dew.

[^4]
CLIMATOLOGICAL DATA--MELBOURNE, VICTORIA.

Latr. $37^{\circ} 49^{\prime}$ S., Long. $144^{\circ} 58^{\prime}$ E. Height above M.S.L., iis Ft. Barometer, Wind, Evaporation, Ltghtning, Clouds and Clear Days.

Temprature and Sunshine.

(a) $\overline{6 / 1865} \overline{\mathrm{a}}$ nd $\overline{\text { I }} 7 / 1922$.
(b) $17 / 188$, and $20 / 1897$.
(c) Total for year.

Humidity, Rainfall and Dew.

Climatological data-hobart, tasmania.

Lat. $42^{\circ} 53^{\prime}$ S., Long. $147^{\circ} 20^{\prime}$ E. Height above M.S.L., 177 Ft.

Barometer, Wind, Evaporation, Lightning, Clouds and Clear Days.

Temperature and Sunshine.

(a) 27/49 and $1 / 00$.
(b) $5 / 86$ and $23 / 05$ Early record
(c) $-/ 89$ and $-/ 93$.
(d) $1 / 86$ and $-/ 99$.
(e) Total for year

* Early records discarded owing to faulty instrument.

CLIAIATOLOGICAL DATA-HOBART, TASMANIA-continued.
Humidity, Rainfall and Def.

§ 3. Standard Times in Australia.

Prior to 1895 the official time adopted in the several colonies was for most purposes the mean solar time of the capital city of each.

In November, i892, an intercolonial conference of surveyors was held in Telbnurne to consider, among other things, the advantages of introducing the system of standard time. In this system it was proposed to make the initial meridian that of Greenwich, and to change local standard time by whole hours according to the longitude east or west of that of Greenwich. Thus for every difference of 15° in Jongitude a change of one hour would be reauired. The minutes and seconds would then be identical everywhere.

To give effect to this proposal it was suggested that Australia should be divided into three zones, the standard times for which shonld be respertively the mean solar times of the meridians of $120^{\circ}, 135^{\circ}$ and 150° Fast longitude, thus giving standard times 8 , 9 and 10 hours respectively, ahead of Greenwich time. It was proposed that the 120° zone should comprise Western Australia, that the 135° zone should comprise South Australia and the Northern Territory, and that the 150° zone should comprise Queensland, New South Wales, Victoria and Tasmania.

The matter was also considered by several intercolonial postal conferences, and eventually in 1894 and 1895 legislation was enacted by each of the colonies in accord with the recommendations of the surveyors' conference of 1892 .

In 1898 the South Australian legislature amended its earlier provision, and adopted the mean solar time of the meridian $1.42^{\circ} 30^{\circ}$ East longitude as the standard time for that colony, thus reducing the difference between the standard time of Adelaide and that of the capitals of the eastem colonies from an hour to haif-an-hour, and forfeiting the great advantage of the system, riz., that the minutes and scoonds should be inlentioal throughout the world.

Particulars concerning these enactments are as follows:-

The standard time in the Federal Capital Territory is the same as in New South Wales.
Consequent upon the opening of the Trans-Australian Railway an arrangement has been made by which the change of time hetween South Australia and Western Australia (viz.. It hours! is divided into two changes of 45 minutes each. Going east from Kalgoorlie the first change is marle at Rawlinna, 235.18 miles ont, where the time is put forvarel by 45 minutes. The second change of the same amount is made at Tarcocla, 794.05 miles out. Thenceforwarl South Australian standard time is kept. The advantage of standard time has thus heen still further sacrificed, as there is not now eren a whole half-hour difference; the essential idea of standard zone time has to this extent, therefore, been adandoned. The State Observatories at Sydney, Melbourne, Adelaide and Perth derive time by astronomical observation. By arrangement with the Australian Broadeasting Commission observatory time-signals are broadeast in the several States at intervals during the day. In arldition, the Amalgamated Wireless (Aיstralasia) Itd. re-broadeast the daily time-signals of certain overseas stations.

[^0]: * Prepared from data suppled by the Commonwealth Meteorologist, W. S. Watt, Eequire.

[^1]: * In Australia, artifficial storage ponds or reservoirs are called "tanks."

[^2]: Note.-The above average rainfall figures for Brisbane, Sydney and Melbourne difier slightly from the mean annual falls given in the Climatological Tables and on page 54 , which are for a less number of year Annual totals from 1860 to 1901 inclusive will be found in Offial lear Book No. 15, page 53.

[^3]: (b) January, February, March, December, various years.

[^4]: * Early records revised during 1929 . Values for period 1867 -September 1885 , reduced 20 per cent. ; for period September r88; to Mareh 1913, reduted io per cent.
 to faulty exposure of instruments.

